Battery management system hardware concepts: an overview M Lelie, T Braun, M Knips, H Nordmann, F Ringbeck, H Zappen, ... Applied Sciences 8 (4), 534, 2018 | 115 | 2018 |
Battery management system hardware concepts: An overview T Braun, H Nordmann, H Zappen, DU Sauer, M Knips, F Ringbeck, ... Applied Sciences, 2018 | 115 | 2018 |
Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries W Li, D Cao, D Jöst, F Ringbeck, M Kuipers, F Frie, DU Sauer Applied Energy 269, 115104, 2020 | 73 | 2020 |
Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter W Li, Y Fan, F Ringbeck, D Jöst, X Han, M Ouyang, DU Sauer Journal of Power Sources 476, 228534, 2020 | 72 | 2020 |
Application of time-resolved multi-sine impedance spectroscopy for lithium-ion battery characterization H Zappen, F Ringbeck, DU Sauer Batteries 4 (4), 64, 2018 | 33 | 2018 |
Post-mortem analysis of inhomogeneous induced pressure on commercial lithium-ion pouch cells and their effects G Fuchs, L Willenberg, F Ringbeck, DU Sauer Sustainability 11 (23), 6738, 2019 | 21 | 2019 |
Uncertainty-aware state estimation for electrochemical model-based fast charging control of lithium-ion batteries F Ringbeck, M Garbade, DU Sauer Journal of Power Sources 470, 228221, 2020 | 20 | 2020 |
Identification of Lithium Plating in Lithium-Ion Batteries by Electrical and Optical Methods F Ringbeck, C Rahe, G Fuchs, DU Sauer Journal of The Electrochemical Society 167 (9), 090536, 2020 | 16 | 2020 |
Physics-informed neural networks for electrode-level state estimation in lithium-ion batteries W Li, J Zhang, F Ringbeck, D Jöst, L Zhang, Z Wei, DU Sauer Journal of Power Sources 506, 230034, 2021 | 15 | 2021 |
Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence W Li, I Demir, D Cao, D Jöst, F Ringbeck, M Junker, DU Sauer Energy Storage Materials 44, 557-570, 2022 | 12 | 2022 |
Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression W Li, Y Fan, F Ringbeck, D Jöst, DU Sauer Applied Energy 306, 118114, 2022 | 5 | 2022 |
Speicherung der elektrischen Energie DU Sauer, J Kowal, L Willenberg, C Rahe, M Teuber, J Drillkens, ... Elektrifizierung des Antriebsstrangs, 61-98, 2019 | 4 | 2019 |
Spatially resolving lithium-ion battery aging by open-hardware scanning acoustic imaging D Wasylowski, N Kisseler, H Ditler, M Sonnet, G Fuchs, F Ringbeck, ... Journal of Power Sources 521, 230825, 2022 | | 2022 |
Optimized charging of lithium-ion batteries with physico-chemical models F Ringbeck, U Krewer, DU Sauer Institut für Stromrichtertechnik und Elektrische Antriebe, 2021 | | 2021 |
Timeseries data of a drive cycle aging test of 28 high energy NCA/C+ Si round cells of type 18650 D Jöst, A Blömeke, DU Sauer, F Ringbeck Institut für Stromrichtertechnik und Elektrische Antriebe, 2021 | | 2021 |
Battery Management System Hardware Concepts: An Overview DUS Sauer, HZ Zappen, MK Knips, HN Nordmann, ML Lelie, TB Braun, ... | | 2018 |
Electrochemical models for fast charging algorithms in battery management systems F Ringbeck, M Garbade, DU Sauer OXFORD BATTERY MODELLING SYMPOSIUM, 35, 0 | | |