Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power S Leva, A Dolara, F Grimaccia, M Mussetta, E Ogliari Mathematics and computers in simulation 131, 88-100, 2017 | 177 | 2017 |
Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system MQ Duong, F Grimaccia, S Leva, M Mussetta, E Ogliari Renewable Energy 70, 197-203, 2014 | 122 | 2014 |
A physical hybrid artificial neural network for short term forecasting of PV plant power output A Dolara, F Grimaccia, S Leva, M Mussetta, E Ogliari Energies 8 (2), 1138-1153, 2015 | 114 | 2015 |
Hybrid predictive models for accurate forecasting in PV systems E Ogliari, F Grimaccia, S Leva, M Mussetta Energies 6 (4), 1918-1929, 2013 | 90 | 2013 |
Physical and hybrid methods comparison for the day ahead PV output power forecast E Ogliari, A Dolara, G Manzolini, S Leva Renewable Energy 113, 11-21, 2017 | 81 | 2017 |
Hybrid model for hourly forecast of photovoltaic and wind power DM Quan, E Ogliari, F Grimaccia, S Leva, M Mussetta 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-6, 2013 | 61 | 2013 |
Investigation on performance decay on photovoltaic modules: Snail trails and cell microcracks A Dolara, S Leva, G Manzolini, E Ogliari IEEE journal of photovoltaics 4 (5), 1204-1211, 2014 | 60 | 2014 |
Hybrid model analysis and validation for PV energy production forecasting A Gandelli, F Grimaccia, S Leva, M Mussetta, E Ogliari 2014 international joint conference on neural networks (IJCNN), 1957-1962, 2014 | 46 | 2014 |
The optimum PV plant for a given solar DC/AC converter RS Faranda, H Hafezi, S Leva, M Mussetta, E Ogliari Energies 8 (6), 4853-4870, 2015 | 43 | 2015 |
Day-ahead photovoltaic forecasting: A comparison of the most effective techniques A Nespoli, E Ogliari, S Leva, A Massi Pavan, A Mellit, V Lughi, A Dolara Energies 12 (9), 1621, 2019 | 39 | 2019 |
ANN sizing procedure for the day-ahead output power forecast of a PV plant F Grimaccia, S Leva, M Mussetta, E Ogliari Applied Sciences 7 (6), 622, 2017 | 34 | 2017 |
Comparison of training approaches for photovoltaic forecasts by means of machine learning A Dolara, F Grimaccia, S Leva, M Mussetta, E Ogliari Applied Sciences 8 (2), 228, 2018 | 33 | 2018 |
Computational intelligence techniques applied to the day ahead PV output power forecast: PHANN, SNO and mixed E Ogliari, A Niccolai, S Leva, RE Zich Energies 11 (6), 1487, 2018 | 26 | 2018 |
An evolutionary-based MPPT algorithm for photovoltaic systems under dynamic partial shading A Dolara, F Grimaccia, M Mussetta, E Ogliari, S Leva Applied Sciences 8 (4), 558, 2018 | 26 | 2018 |
Advanced methods for photovoltaic output power forecasting: A review A Mellit, A Massi Pavan, E Ogliari, S Leva, V Lughi Applied Sciences 10 (2), 487, 2020 | 25 | 2020 |
Day-ahead forecasting for photovoltaic power using artificial neural networks ensembles M Omar, A Dolara, G Magistrati, M Mussetta, E Ogliari, F Viola 2016 IEEE International Conference on Renewable Energy Research and …, 2016 | 21 | 2016 |
PV module fault diagnosis based on microconverters and day-ahead forecast S Leva, M Mussetta, E Ogliari IEEE Transactions on Industrial Electronics 66 (5), 3928-3937, 2018 | 16 | 2018 |
PV hourly day-ahead power forecasting in a micro grid context A Dolara, S Leva, M Mussetta, E Ogliari 2016 IEEE 16th International Conference on Environment and Electrical …, 2016 | 15 | 2016 |
A novel MPPT algorithm for photovoltie systems under dynamic partial shading—Recurrent scan and track method A Dolara, S Leva, G Magistrati, M Mussetta, E Ogliari, RV Arvind 2016 IEEE International Conference on Renewable Energy Research and …, 2016 | 12 | 2016 |
Performance ratio of a PV power plant: Different panel technologies comparison F Degli Uberti, R Faranda, S Leva, E Ogliari Proc. Solar Energy Tech Workshop 8, 13-24, 2010 | 10 | 2010 |