Suivre
Cedric Gerbelot
Cedric Gerbelot
Courant Institute of Mathematical Sciences, NYU
Adresse e-mail validée de cims.nyu.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Learning curves of generic features maps for realistic datasets with a teacher-student model
B Loureiro, C Gerbelot, H Cui, S Goldt, F Krzakala, M Mezard, ...
Advances in Neural Information Processing Systems 34, 18137-18151, 2021
186*2021
Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimensions
B Loureiro, G Sicuro, C Gerbelot, A Pacco, F Krzakala, L Zdeborová
Advances in Neural Information Processing Systems 34, 2021
672021
Asymptotic errors for teacher-student convex generalized linear models (or: How to prove Kabashima’s replica formula)
C Gerbelot, A Abbara, F Krzakala
IEEE Transactions on Information Theory, 2022
582022
Graph-based approximate message passing iterations
C Gerbelot, R Berthier
Information and Inference: A Journal of the IMA 12 (4), 2562-2628, 2023
522023
Asymptotic errors for high-dimensional convex penalized linear regression beyond Gaussian matrices
C Gerbelot, A Abbara, F Krzakala
Conference on Learning Theory, 1682-1713, 2020
51*2020
Fluctuations, bias, variance and ensemble of learners: exact asymptotics for convex losses in high-dimension
B Loureiro, C Gerbelot, M Refinetti, G Sicuro, F Krzakala
Journal of Statistical Mechanics: Theory and Experiment 2023 (11), 114001, 2023
372023
Rigorous dynamical mean-field theory for stochastic gradient descent methods
C Gerbelot, E Troiani, F Mignacco, F Krzakala, L Zdeborova
SIAM Journal on Mathematics of Data Science 6 (2), 400-427, 2024
322024
Learning curves for the multi-class teacher–student perceptron
E Cornacchia, F Mignacco, R Veiga, C Gerbelot, B Loureiro, L Zdeborová
Machine Learning: Science and Technology 4 (1), 015019, 2023
192023
Capillary leveling of freestanding liquid nanofilms
M Ilton, MMP Couchman, C Gerbelot, M Benzaquen, PD Fowler, ...
Physical review letters 117 (16), 167801, 2016
192016
Ballistic Brownian motion of nanoconfined DNA
I Madrid, Z Zheng, C Gerbelot, A Fujiwara, S Li, S Grall, K Nishiguchi, ...
ACS nano 17 (17), 17031-17040, 2023
32023
Applying statistical learning theory to deep learning
C Gerbelot, A Karagulyan, S Karp, K Ravichandran, M Stern, N Srebro
Journal of Statistical Mechanics: Theory and Experiment 2024 (10), 104003, 2024
12024
High-dimensional optimization for multi-spiked tensor PCA
GB Arous, C Gerbelot, V Piccolo
arXiv preprint arXiv:2408.06401, 2024
12024
Multi-layer State Evolution Under Random Convolutional Design
M Daniels, C Gerbelot, F Krzakala, L Zdeborová
Advances in Neural Information Processing Systems 35, 2022
12022
Stochastic gradient descent in high dimensions for multi-spiked tensor PCA
GB Arous, C Gerbelot, V Piccolo
arXiv preprint arXiv:2410.18162, 2024
2024
Stochastic gradient descent in high dimensions for multi-spiked tensor PCA
G Ben Arous, C Gerbelot, V Piccolo
arXiv e-prints, arXiv: 2410.18162, 2024
2024
High-dimensional optimization for multi-spiked tensor PCA
G Ben Arous, C Gerbelot, V Piccolo
arXiv e-prints, arXiv: 2408.06401, 2024
2024
Statistical learning in high dimensions: a rigorous statistical physics approach
C Gerbelot
Université Paris sciences et lettres, 2022
2022
Capillary Leveling of Freestanding Liquid Nanofilms
E Raphaël, M Couchman, T Salez, HA Stone, M Benzaquen, ...
Physical Review Letters 117, 2016
2016
Supplementary information for Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimensions
B Loureiro, G Sicuro, C Gerbelot, A Pacco, F Krzakala, L Zdeborová
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–19