Computing real roots of real polynomials M Sagraloff, K Mehlhorn Journal of Symbolic Computation 73, 46-86, 2016 | 68* | 2016 |

A simple but exact and efficient algorithm for complex root isolation CK Yap, M Sagraloff Proceedings of the 36th international symposium on Symbolic and algebraic …, 2011 | 68 | 2011 |

When Newton meets Descartes: A simple and fast algorithm to isolate the real roots of a polynomial M Sagraloff Proceedings of the 37th International Symposium on Symbolic and Algebraic …, 2012 | 57 | 2012 |

Computing Real Roots of Real Polynomials ... and now For Real! K Alexander, F Rouillier, M Sagraloff Proceedings of the {ACM} on International Symposium on Symbolic and …, 2016 | 41* | 2016 |

A near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration R Becker, M Sagraloff, V Sharma, C Yap Journal of Symbolic Computation 86, 51-96, 2018 | 38 | 2018 |

From approximate factorization to root isolation with application to cylindrical algebraic decomposition K Mehlhorn, M Sagraloff, P Wang Journal of Symbolic Computation 66, 34-69, 2015 | 37 | 2015 |

On the complexity of solving a bivariate polynomial system P Emeliyanenko, M Sagraloff Proceedings of the 37th International Symposium on Symbolic and Algebraic …, 2012 | 34 | 2012 |

An elimination method for solving bivariate polynomial systems: Eliminating the usual drawbacks E Berberich, P Emeliyanenko, M Sagraloff 2011 Proceedings of the Thirteenth Workshop on Algorithm Engineering and …, 2011 | 34 | 2011 |

A worst-case bound for topology computation of algebraic curves M Kerber, M Sagraloff Journal of Symbolic Computation 47 (3), 239-258, 2012 | 32 | 2012 |

On the complexity of computing with planar algebraic curves A Kobel, M Sagraloff Journal of Complexity 31 (2), 206-236, 2015 | 31* | 2015 |

A deterministic algorithm for isolating real roots of a real polynomial K Mehlhorn, M Sagraloff Journal of Symbolic Computation 46 (1), 70-90, 2011 | 31 | 2011 |

Complexity Analysis of Root Clustering for a Complex Polynomial R Becker, M Sagraloff, V Sharma, J Xu, C Yap Proceedings of the {ACM} on International Symposium on Symbolic and …, 2016 | 30 | 2016 |

Solving bivariate systems using Rational Univariate Representations Y Bouzidi, S Lazard, G Moroz, M Pouget, M Rouillier, Fabrice, Sagraloff Journal of Complexity 37, 34--75, 2016 | 29* | 2016 |

Reliable and efficient computational geometry via controlled perturbation K Mehlhorn, R Osbild, M Sagraloff International Colloquium on Automata, Languages, and Programming, 299-310, 2006 | 29 | 2006 |

Efficient real root approximation M Kerber, M Sagraloff Proceedings of the 36th international symposium on Symbolic and algebraic …, 2011 | 28* | 2011 |

An efficient algorithm for the stratification and triangulation of an algebraic surface E Berberich, M Kerber, M Sagraloff Computational Geometry 43 (3), 257-278, 2010 | 28 | 2010 |

Exact geometric-topological analysis of algebraic surfaces E Berberich, M Kerber, M Sagraloff Proceedings of the twenty-fourth annual symposium on computational geometry …, 2008 | 28 | 2008 |

Analytic root clustering: A complete algorithm using soft zero tests C Yap, M Sagraloff, V Sharma Conference on Computability in Europe, 434-444, 2013 | 27 | 2013 |

On the complexity of the Descartes method when using approximate arithmetic M Sagraloff Journal of Symbolic Computation 65, 79-110, 2014 | 26* | 2014 |

A general approach to the analysis of controlled perturbation algorithms K Mehlhorn, R Osbild, M Sagraloff Computational Geometry 44 (9), 507-528, 2011 | 25 | 2011 |