The endoscopic endonasal approach for the management of craniopharyngiomas: a series of 103 patients LM Cavallo, G Frank, P Cappabianca, D Solari, D Mazzatenta, A Villa, ... Journal of neurosurgery 121 (1), 100-113, 2014 | 202 | 2014 |
Sellar repair with fibrin sealant and collagen fleece after endoscopic endonasal transsphenoidal surgery P Cappabianca, LM Cavallo, V Valente, I Romano, AI D'Enza, F Esposito, ... Surgical neurology 62 (3), 227-233, 2004 | 110 | 2004 |
Endoscopic endonasal transsphenoidal removal of recurrent and regrowing pituitary adenomas: experience on a 59-patient series LM Cavallo, D Solari, A Tasiou, F Esposito, M de Angelis, AI D'Enza, ... World neurosurgery 80 (3-4), 342-350, 2013 | 76 | 2013 |
Distance‐based clustering of mixed data M Van de Velden, A Iodice D'Enza, A Markos Wiley Interdisciplinary Reviews: Computational Statistics 11 (3), e1456, 2019 | 61 | 2019 |
Cluster correspondence analysis M Van de Velden, AI D’Enza, F Palumbo Psychometrika 82, 158-185, 2017 | 58 | 2017 |
The “suprasellar notch,” or the tuberculum sellae as seen from below: definition, features, and clinical implications from an endoscopic endonasal perspective M de Notaris, D Solari, LM Cavallo, AI D'Enza, J Enseņat, J Berenguer, ... Journal of neurosurgery 116 (3), 622-629, 2012 | 52 | 2012 |
Beyond tandem analysis: Joint dimension reduction and clustering in R A Markos, AI D'Enza, M van de Velden Journal of Statistical Software 91, 1-24, 2019 | 36 | 2019 |
Iterative factor clustering of binary data A Iodice D’Enza, F Palumbo Computational Statistics 28, 789-807, 2013 | 33 | 2013 |
Multiple correspondence analysis for the quantification and visualization of large categorical data sets AI D’Enza, M Greenacre Advanced statistical methods for the analysis of large data-sets, 453-463, 2012 | 30 | 2012 |
Exploratory data analysis leading towards the most interesting simple association rules AI D’enza, F Palumbo, M Greenacre Computational Statistics & Data Analysis 52 (6), 3269-3281, 2008 | 12 | 2008 |
On joint dimension reduction and clustering of categorical data A Iodice D’Enza, M Van de Velden, F Palumbo Analysis and modeling of complex data in behavioral and social sciences, 161-169, 2014 | 10 | 2014 |
’Enza A, Markos A M Van de Velden, D Iodice Distance-based clustering of mixed data. WIREs Computational Stat 11, e1456, 2019 | 8 | 2019 |
’Enza, A., van de Velden, M A Markos, D Iodice Beyond tandem analysis: joint dimension reduction and clustering in RJ Stat …, 2019 | 6 | 2019 |
The idm package: incremental decomposition methods in R AI D’Enza, A Markos, D Buttarazzi Journal of Statistical Software 86 (4), 1-24, 2018 | 6 | 2018 |
’Enza A, Van de Velden M (2019). clustrd: Methods for Joint Dimension Reduction and Clustering A Markos, D Iodice R package version 1 (0), 0 | 6 | |
Low-dimensional tracking of association structures in categorical data A Iodice D’Enza, A Markos Statistics and Computing 25, 1009-1022, 2015 | 5 | 2015 |
Exploratory data analysis leading towards the most interesting simple association rules A Iodice D'Enza, F Palumbo, M Greenacre Computational statistics & data analysis 52 (6), 3269-3281, 2008 | 4 | 2008 |
Special feature: dimension reduction and cluster analysis M van de Velden, AI D’Enza, M Yamamoto Behaviormetrika 46, 239-241, 2019 | 3 | 2019 |
Incremental Generalized Canonical Correlation Analysis A Markos, AI D’Enza Analysis of Large and Complex Data, 185-194, 2016 | 3 | 2016 |
New graphical symbolic objects representations in parallel coordinates CN Lauro, F Palumbo, AI D’Enza aging (months) 24, 48, 2003 | 3 | 2003 |