Follow
Christian Callegari
Christian Callegari
Researcher, CNIT
Verified email at iet.unipi.it
Title
Cited by
Cited by
Year
Data traffic monitoring and analysis
E Biersack, C Callegari, M Matijasevic
Springer Berlin Heidelberg, 2013
662013
Combining wavelet analysis and information theory for network anomaly detection
C Callegari, M Pagano, S Giordano, T Pepe
Proceedings of the 4th International Symposium on Applied Sciences in …, 2011
652011
Skype‐hunter: A real‐time system for the detection and classification of skype traffic
D Adami, C Callegari, S Giordano, M Pagano, T Pepe
International Journal of Communication Systems 25 (3), 386-403, 2012
582012
Behavior analysis of TCP Linux variants
C Callegari, S Giordano, M Pagano, T Pepe
Computer Networks 56 (1), 462-476, 2012
572012
Improving PCA‐based anomaly detection by using multiple time scale analysis and Kullback–Leibler divergence
C Callegari, L Gazzarrini, S Giordano, M Pagano, T Pepe
International Journal of Communication Systems 27 (10), 1731-1751, 2014
452014
A real-time algorithm for skype traffic detection and classification
D Adami, C Callegari, S Giordano, M Pagano, T Pepe
Conference on Smart Spaces, 168-179, 2009
442009
A survey of congestion control mechanisms in Linux TCP
C Callegari, S Giordano, M Pagano, T Pepe
Distributed Computer and Communication Networks: 17th International …, 2014
432014
An information-theoretic method for the detection of anomalies in network traffic
C Callegari, S Giordano, M Pagano
Computers & Security 70, 351-365, 2017
402017
A methodological overview on anomaly detection
C Callegari, A Coluccia, A D’Alconzo, W Ellens, S Giordano, M Mandjes, ...
Data Traffic Monitoring and Analysis: From Measurement, Classification, and …, 2013
392013
Entropy-based network anomaly detection
C Callegari, S Giordano, M Pagano
2017 International Conference on Computing, Networking and Communications …, 2017
362017
Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS2
G Migliato Marega, Z Wang, M Paliy, G Giusi, S Strangio, F Castiglione, ...
ACS nano 16 (3), 3684-3694, 2022
302022
DNS‐Class: immediate classification of IP flows using DNS
P Foremski, C Callegari, M Pagano
International Journal of Network Management 24 (4), 272-288, 2014
292014
A new statistical approach to network anomaly detection
C Callegari, S Vaton, M Pagano
2008 International Symposium on Performance Evaluation of Computer and …, 2008
292008
WAVE-CUSUM: Improving CUSUM performance in network anomaly detection by means of wavelet analysis
C Callegari, S Giordano, M Pagano, T Pepe
computers & security 31 (5), 727-735, 2012
282012
When randomness improves the anomaly detection performance
C Callegari, L Gazzarrini, S Giordano, M Pagano, T Pepe
2010 3rd International Symposium on Applied Sciences in Biomedical and …, 2010
272010
G-RDM: a new bandwidth constraints model for DS-TE networks
D Adami, C Callegari, S Giordano, M Pagano, M Toninelli
IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference, 2472-2476, 2007
272007
Signalling protocols in diffserv-aware MPLS networks: design and implementation of RSVP-TE network simulator
D Adami, C Callegari, S Giordano, F Mustacchio, M Pagano, F Vitucci
GLOBECOM'05. IEEE Global Telecommunications Conference, 2005. 2, 792-796, 2005
262005
Waterfall: Rapid identification of IP flows using cascade classification
P Foremski, C Callegari, M Pagano
Computer Networks: 21st International Conference, CN 2014, Brunów, Poland …, 2014
252014
Detecting anomalies in backbone network traffic: a performance comparison among several change detection methods
C Callegari, S Giordano, M Pagano, T Pepe
International Journal of Sensor Networks 11 (4), 205-214, 2012
212012
Combining sketches and wavelet analysis for multi time-scale network anomaly detection
C Callegari, S Giordano, M Pagano, T Pepe
Computers & Security 30 (8), 692-704, 2011
212011
The system can't perform the operation now. Try again later.
Articles 1–20