Markus Haltmeier
Cited by
Cited by
Variational methods in imaging
O Scherzer, M Grasmair, H Grossauer, M Haltmeier, F Lenzen
Springer Science+ Business Media LLC, 2009
Inversion of spherical means and the wave equation in even dimensions
D Finch, M Haltmeier, Rakesh
SIAM Journal of Applied Mathematics 68 (2), 2007
Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector
G Paltauf, R Nuster, M Haltmeier, P Burgholzer
Applied Optics 46 (16), 3352-3358, 2007
Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface
P Burgholzer, GJ Matt, M Haltmeier, G Paltauf
Physical Review E 75 (4), 046706, 2007
Sparse regularization with lq penalty term
M Grasmair, M Haltmeier, O Scherzer
Inverse Problems 24 (5), 055020, 2008
Thermoacoustic tomography with integrating area and line detectors
P Burgholzer, C Hofer, G Paltauf, M Haltmeier, O Scherzer
IEEE Trans. on Ultrasonics, Ferroelectrics and Frequ. Control. 52 (9), 1577-1583, 2005
Thermoacoustic computed tomography with large planar receivers
M Haltmeier, O Scherzer, P Burgholzer, G Paltauf
Inverse problems 20 (5), 1663, 2004
Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors
G Paltauf, R Nuster, M Haltmeier, P Burgholzer
Inverse Problems 23, S81–S94, 2007
Filtered backprojection for thermoacoustic computed tomography in spherical geometry
M Haltmeier, T Schuster, O Scherzer
Mathematical Methods in the Applied Sciences 28 (16), 1919-1937, 2005
Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors
P Burgholzer, J Bauer-Marschallinger, H Grün, M Haltmeier, G Paltauf
Inverse Problems 23, S65–S80, 2007
Necessary and sufficient conditions for linear convergence of ℓ1‐regularization
M Grasmair, O Scherzer, M Haltmeier
Communications on Pure and Applied Mathematics 64 (2), 161-182, 2011
Deep learning for photoacoustic tomography from sparse data
S Antholzer, M Haltmeier, J Schwab
Inverse problems in science and engineering 27 (7), 987-1005, 2019
Thermoacoustic tomography and the circular Radon transform: exact inversion formula
M Haltmeier, O Scherzer, P Burgholzer, R Nuster, G Paltauf
Mathematical Models and Methods in Applied Sciences 17 (4), 635-655, 2007
Kaczmarz methods for regularizing nonlinear ill-posed equations I: Convergence analysis
M Haltmeier, A Leitao, O Scherzer
Inverse Problems & Imaging 1 (2), 289, 2007
Universal inversion formulas for recovering a function from spherical means
M Haltmeier
SIAM Journal on Mathematical Analysis 46 (1), 214-232, 2014
A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT
M Haltmeier, O Scherzer, G Zangerl
IEEE Transactions on Medical Imaging 28 (11), 1727-1735, 2009
On steepest-descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations
A De Cezaro, M Haltmeier, A Leitão, O Scherzer
Applied Mathematics and Computation 202 (2), 596-607, 2008
NETT: Solving inverse problems with deep neural networks
H Li, J Schwab, S Antholzer, M Haltmeier
Inverse Problems 36 (6), 065005, 2020
Single-stage reconstruction algorithm for quantitative photoacoustic tomography
M Haltmeier, L Neumann, S Rabanser
Inverse Problems 31 (6), 065005, 2015
Inversion of circular means and the wave equation on convex planar domains
M Haltmeier
Computers & Mathematics with Applications 65 (7), 1025-1036, 2013
The system can't perform the operation now. Try again later.
Articles 1–20