Yao Wu
Title
Cited by
Cited by
Year
Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
Y Wu, C DuBois, AX Zheng, M Ester
Proceedings of the Ninth ACM International Conference on Web Search and Data …, 2016
6292016
Modeling user posting behavior on social media
Z Xu, Y Zhang, Y Wu, Q Yang
Proceedings of the 35th international ACM SIGIR conference on Research and …, 2012
1502012
FLAME: A Probabilistic Model Combining Aspect Based Opinion Mining and Collaborative Filtering
Y Wu, M Ester
Proceedings of the Eighth ACM International Conference on Web Search and …, 2015
1442015
Community discovery in twitter based on user interests
Y Zhang, Y Wu, Q Yang
Journal of Computational Information Systems 8 (3), 991-1000, 2012
682012
CCCF: Improving Collaborative Filtering via Scalable User-Item Co-Clustering
Y Wu, X Liu, M Xie, M Ester, Q Yang
Proceedings of the Ninth ACM International Conference on Web Search and Data …, 2016
492016
Semi-supervised Clustering in Attributed Heterogeneous Information Networks
X Li, Y Wu, M Ester, B Kao, X Wang, Y Zheng
WWW 2017, 2017
482017
Structural Analysis of User Choices for Mobile App Recommendation
B Liu, Y Wu, NZ Gong, J Wu, H Xiong, M Ester
ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (2), 2016
272016
Efficient Multicore Collaborative Filtering
Y Wu, Q Yan, D Bickson, Y Low, Q Yang
Arxiv preprint arXiv:1108.2580, 2011
182011
Simclusters: Community-based representations for heterogeneous recommendations at twitter
V Satuluri, Y Wu, X Zheng, Y Qian, B Wichers, Q Dai, GM Tang, J Jiang, ...
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge …, 2020
32020
SCHAIN-IRAM: An Efficient and Effective Semi-supervised Clustering Algorithm for Attributed Heterogeneous Information Networks
X Li, Y Wu, M Ester, B Kao, X Wang, Y Zheng
IEEE Transactions on Knowledge and Data Engineering, 2020
12020
Towards Better User Preference Learning for Recommender Systems
Y Wu
Simon Fraser University, 2016
12016
The system can't perform the operation now. Try again later.
Articles 1–11