Dilations and information flow axioms in categorical probability T Fritz, T Gonda, NG Houghton-Larsen, A Lorenzin, P Perrone, D Stein Mathematical Structures in Computer Science 33 (10), 913-957, 2023 | 17 | 2023 |
Absolute continuity, supports and idempotent splitting in categorical probability T Fritz, T Gonda, A Lorenzin, P Perrone, D Stein arXiv preprint arXiv:2308.00651, 2023 | 8 | 2023 |
Compatibility of t-Structures in a Semiorthogonal Decomposition A Lorenzin Applied Categorical Structures 30 (4), 755-778, 2022 | 4 | 2022 |
Formality and strongly unique enhancements A Lorenzin arXiv preprint arXiv:2204.09527, 2022 | 3 | 2022 |
Some developments on existence and uniqueness of DG-enhancements A Lorenzin Università degli Studi di Milano-Bicocca, 2023 | 1 | 2023 |
The Aldous--Hoover Theorem in Categorical Probability L Chen, T Fritz, T Gonda, A Klingler, A Lorenzin arXiv preprint arXiv:2411.12840, 2024 | | 2024 |
Involutive Markov categories and the quantum de Finetti theorem T Fritz, A Lorenzin arXiv preprint arXiv:2312.09666, 2023 | | 2023 |
Representability in Categorical Quantum Probability T Fritz, A Lorenzin | | 2023 |
Absolute continuity, supports and idempotent splitting in Markov categories T Fritz, T Gonda, A Lorenzin, P Perrone, D Stein | | |