Karl Øyvind Mikalsen
Title
Cited by
Cited by
Year
Time series cluster kernel for learning similarities between multivariate time series with missing data
KØ Mikalsen, FM Bianchi, C Soguero-Ruiz, R Jenssen
Pattern Recognition 76, 569-581, 2018
812018
Analysis of free text in electronic health records for identification of cancer patient trajectories
K Jensen, C Soguero-Ruiz, KO Mikalsen, RO Lindsetmo, ...
Scientific reports 7 (1), 1-12, 2017
722017
Learning representations of multivariate time series with missing data
FM Bianchi, L Livi, KØ Mikalsen, M Kampffmeyer, R Jenssen
Pattern Recognition 96, 106973, 2019
33*2019
Robust clustering using a kNN mode seeking ensemble
JN Myhre, KØ Mikalsen, S Løkse, R Jenssen
Pattern Recognition 76, 491-505, 2018
302018
Noisy multi-label semi-supervised dimensionality reduction
KØ Mikalsen, C Soguero-Ruiz, FM Bianchi, R Jenssen
Pattern Recognition 90, 257-270, 2019
212019
Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks
AS Strauman, FM Bianchi, KØ Mikalsen, M Kampffmeyer, C Soguero-Ruiz, ...
2018 IEEE EMBS International Conference on Biomedical & Health Informatics …, 2018
202018
Using anchors from free text in electronic health records to diagnose postoperative delirium
KØ Mikalsen, C Soguero-Ruiz, K Jensen, K Hindberg, M Gran, ...
Computer Methods and Programs in Biomedicine 152, 105-114, 2017
112017
Maximizing Interpretability and Cost-Effectiveness of Surgical Site Infection (SSI) Predictive Models Using Feature-Specific Regularized Logistic Regression on Preoperative …
P Kocbek, N Fijacko, C Soguero-Ruiz, KØ Mikalsen, U Maver, ...
Computational and Mathematical Methods in Medicine 2019, 2019
102019
Learning compressed representations of blood samples time series with missing data
FM Bianchi, KØ Mikalsen, R Jenssen
arXiv preprint arXiv:1710.07547, 2017
72017
Learning similarities between irregularly sampled short multivariate time series from EHRs
KØ Mikalsen, FM Bianchi, C Soguero-Ruiz, SO Skrøvseth, RO Lindsetmo, ...
72016
An Unsupervised Multivariate Time Series Kernel Approach for Identifying Patients with Surgical Site Infection from Blood Samples
KØ Mikalsen, C Soguero-Ruiz, FM Bianchi, A Revhaug, R Jenssen
arXiv preprint arXiv:1803.07879, 2018
62018
Consensus clustering using knn mode seeking
JN Myhre, KØ Mikalsen, S Løkse, R Jenssen
Scandinavian Conference on Image Analysis, 175-186, 2015
62015
Time series cluster kernels to exploit informative missingness and incomplete label information
KØ Mikalsen, C Soguero-Ruiz, FM Bianchi, A Revhaug, R Jenssen
Pattern Recognition, 107896, 2021
32021
A kernel to exploit informative missingness in multivariate time series from EHRs
KØ Mikalsen, C Soguero-Ruiz, R Jenssen
Explainable AI in Healthcare and Medicine, 23-36, 2020
12020
Deforming the vacuum. On the physical origin and numerical calculation of the Casimir effect.
KØ Mikalsen
UiT Norges arktiske universitet, 2014
12014
On the Use of Time Series Kernel and Dimensionality Reduction to Identify the Acquisition of Antimicrobial Multidrug Resistance in the Intensive Care Unit
Ó Escudero-Arnanz, J Rodríguez-Álvarez, KØ Mikalsen, R Jenssen, ...
arXiv preprint arXiv:2107.10398, 2021
2021
A Kernel to Exploit Informative Missingness in Multivariate Time Series from EHRs
KØ Mikalsen, C Soguero-Ruiz, R Jenssen
Explainable AI in Healthcare and Medicine, 23-36, 2021
2021
Uncertainty-Aware Deep Ensembles for Reliable and Explainable Predictions of Clinical Time Series
KK Wickstrøm, K ØyvindMikalsen, M Kampffmeyer, A Revhaug, ...
IEEE Journal of Biomedical and Health Informatics, 2020
2020
Advancing Unsupervised and Weakly Supervised Learning with Emphasis on Data-Driven Healthcare
KØ Mikalsen
UiT Norges arktiske universitet, 2019
2019
Using multi-anchors to identify patients suffering from multimorbidities
K yvind Mikalsen, C Soguero-Ruiz, I Mora-Jimenez, ICL Fando, ...
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM …, 2018
2018
The system can't perform the operation now. Try again later.
Articles 1–20