Francesco Pappalardo
Francesco Pappalardo
Verified email at - Homepage
Cited by
Cited by
In silico clinical trials: concepts and early adoptions
F Pappalardo, G Russo, FM Tshinanu, M Viceconti
Briefings in bioinformatics 20 (5), 1699-1708, 2019
In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products
M Viceconti, F Pappalardo, B Rodriguez, M Horner, J Bischoff, ...
Methods 185, 120-127, 2021
Mathematical modeling of biological systems
S Motta, F Pappalardo
Briefings in Bioinformatics 14 (4), 411-422, 2013
Modeling and simulation of cancer immunoprevention vaccine
F Pappalardo, PL Lollini, F Castiglione, S Motta
Bioinformatics 21 (12), 2891-2897, 2005
Agent-based modeling of the immune system: NetLogo, a promising framework
F Chiacchio, M Pennisi, G Russo, S Motta, F Pappalardo
BioMed research international 2014, 2014
In silico modeling and in vivo efficacy of cancer-preventive vaccinations
A Palladini, G Nicoletti, F Pappalardo, A Murgo, V Grosso, V Stivani, ...
Cancer research 70 (20), 7755-7763, 2010
Optimization of HAART with genetic algorithms and agent-based models of HIV infection
F Castiglione, F Pappalardo, M Bernaschi, S Motta
Bioinformatics 23 (24), 3350-3355, 2007
Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator
PL Lollini, S Motta, F Pappalardo
BMC bioinformatics 7, 1-9, 2006
Modeling biology spanning different scales: an open challenge
F Castiglione, F Pappalardo, C Bianca, G Russo, S Motta
BioMed research international 2014, 2014
Combining cellular automata and lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition
D Alemani, F Pappalardo, M Pennisi, S Motta, V Brusic
Journal of Immunological Methods 376 (1-2), 55-68, 2012
SimB16: modeling induced immune system response against B16-melanoma
F Pappalardo, IM Forero, M Pennisi, A Palazon, I Melero, S Motta
PloS one 6 (10), e26523, 2011
Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells
M Truffi, M Colombo, L Sorrentino, L Pandolfi, S Mazzucchelli, ...
Scientific reports 8 (1), 6563, 2018
Computational modeling of PI3K/AKT and MAPK signaling pathways in melanoma cancer
F Pappalardo, G Russo, S Candido, M Pennisi, S Cavalieri, S Motta, ...
PLoS One 11 (3), e0152104, 2016
Immune-checkpoint inhibitors from cancer to COVID‑19: A promising avenue for the treatment of patients with COVID‑19
S Vivarelli, L Falzone, F Torino, G Scandurra, G Russo, R Bordonaro, ...
International journal of oncology 58 (2), 145-157, 2021
Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility
FT Musuamba, I Skottheim Rusten, R Lesage, G Russo, R Bursi, L Emili, ...
CPT: Pharmacometrics & Systems Pharmacology 10 (8), 804-825, 2021
SHyFTA, a Stochastic Hybrid Fault Tree Automaton for the modelling and simulation of dynamic reliability problems
F Chiacchio, D D'Urso, L Compagno, M Pennisi, F Pappalardo, G Manno
Expert Systems with Applications 47, 42-57, 2016
Modeling immune system control of atherogenesis
F Pappalardo, S Musumeci, S Motta
Bioinformatics 24 (15), 1715-1721, 2008
Credibility of In Silico Trial Technologies—A Theoretical Framing
M Viceconti, MA Juárez, C Curreli, M Pennisi, G Russo, F Pappalardo
IEEE journal of biomedical and health informatics 24 (1), 4-13, 2019
Modeling the competition between lung metastases and the immune system using agents
M Pennisi, F Pappalardo, A Palladini, G Nicoletti, P Nanni, PL Lollini, ...
BMC bioinformatics 11, 1-15, 2010
Vaccine protocols optimization: in silico experiences
F Pappalardo, M Pennisi, F Castiglione, S Motta
Biotechnology Advances 28 (1), 82-93, 2010
The system can't perform the operation now. Try again later.
Articles 1–20