paolo marcatili
paolo marcatili
Head of Antibody Design, Novo Nordisk
Email verificata su - Home page
Citata da
Citata da
BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes
MC Jespersen, B Peters, M Nielsen, P Marcatili
Nucleic acids research 45 (W1), W24-W29, 2017
NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
V Jurtz, S Paul, M Andreatta, P Marcatili, B Peters, M Nielsen
The Journal of Immunology 199 (9), 3360-3368, 2017
Improved methods for predicting peptide binding affinity to MHC class II molecules
KK Jensen, M Andreatta, P Marcatili, S Buus, JA Greenbaum, Z Yan, ...
Immunology 154 (3), 394-406, 2018
NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning
MS Klausen, MC Jespersen, H Nielsen, KK Jensen, VI Jurtz, ...
Proteins: Structure, Function, and Bioinformatics 87 (6), 520-527, 2019
DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks
J Hallgren, KD Tsirigos, MD Pedersen, JJ Almagro Armenteros, ...
BioRxiv, 2022.04. 08.487609, 2022
IEDB-AR: immune epitope database—analysis resource in 2019
SK Dhanda, S Mahajan, S Paul, Z Yan, H Kim, MC Jespersen, V Jurtz, ...
Nucleic acids research 47 (W1), W502-W506, 2019
PIGS: automatic prediction of antibody structures
P Marcatili, A Rosi, A Tramontano
Bioinformatics 24 (17), 1953-1954, 2008
Antibody specific B-cell epitope predictions: leveraging information from antibody-antigen protein complexes
MC Jespersen, S Mahajan, B Peters, M Nielsen, P Marcatili
Frontiers in immunology 10, 298, 2019
NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning
MH Hie, EN Kiehl, B Petersen, M Nielsen, O Winther, H Nielsen, ...
Nucleic acids research 50 (W1), W510-W515, 2022
On the mechanism of chloroquine resistance in Plasmodium falciparum
M Chinappi, A Via, P Marcatili, A Tramontano
PloS one 5 (11), e14064, 2010
The association of heavy and light chain variable domains in antibodies: implications for antigen specificity
A Chailyan, P Marcatili, A Tramontano
FEBS Journal, 2011
Stereotyped patterns of B-cell receptor in splenic marginal zone lymphoma
S Zibellini, D Capello, F Forconi, P Marcatili, D Rossi, S Rattotti, ...
haematologica, haematol. 2010.025437 v1, 2010
Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server
PP Olimpieri, A Chailyan, A Tramontano, P Marcatili
Bioinformatics 29 (18), 2285-2291, 2013
AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides
TH Olsen, B Yesiltas, FI Marin, M Pertseva, PJ Garca-Moreno, ...
Scientific reports 10 (1), 21471, 2020
T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide–MHC complexes
AK Bentzen, L Such, KK Jensen, AM Marquard, LE Jessen, NJ Miller, ...
Nature biotechnology 36 (12), 1191-1196, 2018
NetTCR: sequence-based prediction of TCR binding to peptide-MHC complexes using convolutional neural networks
VI Jurtz, LE Jessen, AK Bentzen, MC Jespersen, S Mahajan, R Vita, ...
BioRxiv, 433706, 2018
The ABCD database: a repository for chemically defined antibodies
WC Lima, E Gasteiger, P Marcatili, P Duek, A Bairoch, P Cosson
Nucleic acids research 48 (D1), D261-D264, 2020
Antibody informatics for drug discovery
H Shirai, C Prades, R Vita, P Marcatili, B Popovic, J Xu, JP Overington, ...
Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1844 (11), 2002-2015, 2014
Immunoglobulin G structure and rheumatoid factor epitopes
SL Maibom-Thomsen, NH Trier, BE Holm, KB Hansen, MI Rasmussen, ...
PLoS One 14 (6), e0217624, 2019
LYRA, a webserver for lymphocyte receptor structural modeling
MS Klausen, MV Anderson, MC Jespersen, M Nielsen, P Marcatili
Nucleic Acids Research 43 (W1), W349-W355, 2015
Il sistema al momento non pu eseguire l'operazione. Riprova pi tardi.
Articoli 1–20