Chance constrained uncertain classification via robust optimization A Ben-Tal, S Bhadra, C Bhattacharyya, JS Nath Mathematical programming 127 (1), 145-173, 2011 | 55 | 2011 |
RAPID: resource of Asian primary immunodeficiency diseases S Keerthikumar, R Raju, K Kandasamy, A Hijikata, S Ramabadran, ... Nucleic acids research 37 (suppl_1), D863-D867, 2009 | 47 | 2009 |
Web information extraction using Markov logic networks S Satpal, S Bhadra, S Sellamanickam, R Rastogi, P Sen Proceedings of the 17th ACM SIGKDD international conference on Knowledge …, 2011 | 39 | 2011 |
Multi-view kernel completion S Bhadra, S Kaski, J Rousu Machine Learning 106 (5), 713-739, 2017 | 29 | 2017 |
Prediction of candidate primary immunodeficiency disease genes using a support vector machine learning approach S Keerthikumar, S Bhadra, K Kandasamy, R Raju, YL Ramachandra, ... DNA research 16 (6), 345-351, 2009 | 26 | 2009 |
Mast cell stabilization and membrane protection activity of Barleria prionitis L. AK Maji, S Bhadra, S Mahapatra, P Banerji, D Banerjee Pharmacognosy Journal 3 (24), 67-71, 2011 | 23 | 2011 |
Efficient Methods for Robust Classification Under Uncertainty in Kernel Matrices. A Ben-Tal, S Bhadra, C Bhattacharyya, A Nemirovski Journal of Machine Learning Research 13 (10), 2012 | 17 | 2012 |
Large-scale sparse kernel canonical correlation analysis V Uurtio, S Bhadra, J Rousu International Conference on Machine Learning, 6383-6391, 2019 | 10 | 2019 |
Interval data classification under partial information: A chance-constraint approach S Bhadra, JS Nath, A Ben-Tal, C Bhattacharyya Pacific-Asia Conference on Knowledge Discovery and Data Mining, 208-219, 2009 | 10 | 2009 |
A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data S Bhadra, C Bhattacharyya, NR Chandra, IS Mian Algorithms for molecular biology 4 (1), 1-15, 2009 | 9 | 2009 |
Correction of noisy labels via mutual consistency check S Bhadra, M Hein Neurocomputing 160, 34-52, 2015 | 8 | 2015 |
Robust formulations for handling uncertainty in kernel matrices S Bhadra, S Bhattacharya, C Bhattacharyya, A Ben-Tal ICML, 2010 | 7 | 2010 |
Principal metabolic flux mode analysis S Bhadra, P Blomberg, S Castillo, J Rousu Bioinformatics 34 (14), 2409-2417, 2018 | 6 | 2018 |
Reducing network incompleteness through online learning: a feasibility study T LaRock, T Sakharov, S Bhadra, T Eliassi-Rad The 14th International Workshop on Mining and Learning with Graphs, 2018 | 6 | 2018 |
Sparse non-linear cca through hilbert-schmidt independence criterion V Uurtio, S Bhadra, J Rousu 2018 IEEE International Conference on Data Mining (ICDM), 1278-1283, 2018 | 4 | 2018 |
Learning robust support vector machine classifiers with uncertain observations S Bhadra PhD thesis, Citeseer, 2012 | 4 | 2012 |
Warping resilient time series embeddings A Mathew, S Bhadra arXiv preprint arXiv:1906.05205, 2019 | 2 | 2019 |
Multi-View Data Completion S Bhadra Linking and Mining Heterogeneous and Multi-view Data, 1-25, 2019 | 1 | 2019 |
Understanding the limitations of network online learning T LaRock, T Sakharov, S Bhadra, T Eliassi-Rad Applied Network Science 5 (1), 1-25, 2020 | | 2020 |
Time Series Representation Learning Applications for Power Analytics A Mathew, P Deepak, S Bhadra, N Pindoriya, A Kiprakis, SN Singh 2019 20th International Conference on Intelligent System Application to …, 2019 | | 2019 |