Mario Geiger
TitleCited byYear
3d steerable cnns: Learning rotationally equivariant features in volumetric data
M Weiler, M Geiger, M Welling, W Boomsma, TS Cohen
Advances in Neural Information Processing Systems, 10381-10392, 2018
Comparing dynamics: Deep neural networks versus glassy systems
M Baity-Jesi, L Sagun, M Geiger, S Spigler, GB Arous, C Cammarota, ...
arXiv preprint arXiv:1803.06969, 2018
Convolutional networks for spherical signals
T Cohen, M Geiger, J Köhler, M Welling
arXiv preprint arXiv:1709.04893, 2017
Jamming transition as a paradigm to understand the loss landscape of deep neural networks
M Geiger, S Spigler, S d'Ascoli, L Sagun, M Baity-Jesi, G Biroli, M Wyart
Physical Review E 100 (1), 012115, 2019
Thermal solar collector with VO2 absorber coating and V1-xWxO2 thermochromic glazing–Temperature matching and triggering
A Paone, M Geiger, R Sanjines, A Schüler
Solar energy 110, 151-159, 2014
Intertwiners between induced representations (with applications to the theory of equivariant neural networks)
TS Cohen, M Geiger, M Weiler
arXiv preprint arXiv:1803.10743, 2018
A jamming transition from under-to over-parametrization affects loss landscape and generalization
S Spigler, M Geiger, S d'Ascoli, L Sagun, G Biroli, M Wyart
arXiv preprint arXiv:1810.09665, 2018
Scaling description of generalization with number of parameters in deep learning
M Geiger, A Jacot, S Spigler, F Gabriel, L Sagun, S d'Ascoli, G Biroli, ...
arXiv preprint arXiv:1901.01608, 2019
A general theory of equivariant cnns on homogeneous spaces
TS Cohen, M Geiger, M Weiler
Advances in Neural Information Processing Systems, 9142-9153, 2019
Embedded microstructures for daylighting and seasonal thermal control
A Kostro, M Geiger, N Jolissaint, MAG Lazo, JL Scartezzini, Y Leterrier, ...
Nonimaging Optics: Efficient Design for Illumination and Solar Concentration …, 2012
Deep convolutional neural networks as strong gravitational lens detectors
C Schaefer, M Geiger, T Kuntzer, JP Kneib
Astronomy & Astrophysics 611, A2, 2018
CFSpro: ray tracing for design and optimization of complex fenestration systems using mixed dimensionality approach
A Kostro, M Geiger, JL Scartezzini, A Schüler
Applied optics 55 (19), 5127-5134, 2016
The strong gravitational lens finding challenge
RB Metcalf, M Meneghetti, C Avestruz, F Bellagamba, CR Bom, E Bertin, ...
Astronomy & Astrophysics 625, A119, 2019
Disentangling feature and lazy learning in deep neural networks: an empirical study
M Geiger, S Spigler, A Jacot, M Wyart
arXiv preprint arXiv:1906.08034, 2019
Asymptotic learning curves of kernel methods: empirical data vs Teacher-Student paradigm
S Spigler, M Geiger, M Wyart
arXiv preprint arXiv:1905.10843, 2019
A jamming transition from under-to over-parametrization affects generalization in deep learning
S Spigler, M Geiger, S d’Ascoli, L Sagun, G Biroli, M Wyart
Journal of Physics A: Mathematical and Theoretical 52 (47), 474001, 2019
Encapsulated Microstructures for Daylighting and Seasonal Thermal Control
A Kostro, M Geiger, R Teuscher, M Gonzalez Lazo, JL Scartezzini, ...
SPIE Optics & Photonics, 2012
Towards microstructured glazing for daylighting and thermal control
AG Kostro, M Geiger, JL Scartezzini, A Schueler
Proceedings of CISBAT 2011-CleanTech for Sustainable Buildings, 455-460, 2011
Supplementary Material: A General Theory of Equivariant CNNs on Homogeneous Spaces
TS Cohen, M Geiger, M Weiler
The system can't perform the operation now. Try again later.
Articles 1–19