Computing the electrical activity in the heart J Sundnes, GT Lines, X Cai, BF Nielsen, KA Mardal, A Tveito Springer Science & Business Media, 2007 | 550 | 2007 |

An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso J Sundnes, GT Lines, A Tveito Mathematical biosciences 194 (2), 233-248, 2005 | 197 | 2005 |

On the computational complexity of the bidomain and the monodomain models of electrophysiology J Sundnes, BF Nielsen, KA Mardal, X Cai, GT Lines, A Tveito Annals of biomedical engineering 34, 1088-1097, 2006 | 151 | 2006 |

Mathematical models and numerical methods for the forward problem in cardiac electrophysiology GT Lines, ML Buist, P Grottum, AJ Pullan, J Sundnes, A Tveito Computing and Visualization in Science 5, 215-239, 2003 | 142 | 2003 |

Ryanodine receptor dispersion disrupts Ca^{2+} release in failing cardiac myocytesTR Kolstad, J van den Brink, N MacQuaide, PK Lunde, M Frisk, ... Elife 7, e39427, 2018 | 103 | 2018 |

Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells J Sundnes, GT Lines, A Tveito Mathematical biosciences 172 (2), 55-72, 2001 | 97 | 2001 |

Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart J Sundnes, GT Lines, KA Mardal, A Tveito Computer Methods in Biomechanics & Biomedical Engineering 5 (6), 397-409, 2002 | 91 | 2002 |

Simulation of ST segment changes during subendocardial ischemia using a realistic 3-D cardiac geometry MC MacLachlan, J Sundnes, GT Lines IEEE Transactions on Biomedical Engineering 52 (5), 799-807, 2005 | 90 | 2005 |

Modeling the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso GT Lines, P Grottum, A Tveito Computing and Visualization in Science 5, 195-213, 2003 | 83 | 2003 |

Contribution of the Na+/Ca2+ exchanger to rapid Ca2+ release in cardiomyocytes GT Lines, JB Sande, WE Louch, HK Mørk, P Grøttum, OM Sejersted Biophysical journal 91 (3), 779-792, 2006 | 76 | 2006 |

An evaluation of the accuracy of classical models for computing the membrane potential and extracellular potential for neurons A Tveito, KH Jæger, GT Lines, Ł Paszkowski, J Sundnes, AG Edwards, ... Frontiers in computational neuroscience 11, 27, 2017 | 71 | 2017 |

Numerical solution of the bidomain equations S Linge, J Sundnes, M Hanslien, GT Lines, A Tveito Philosophical Transactions of the Royal Society A: Mathematical, Physical …, 2009 | 67 | 2009 |

Optimal monodomain approximations of the bidomain equations BF Nielsen, TS Ruud, GT Lines, A Tveito Applied Mathematics and Computation 184 (2), 276-290, 2007 | 64 | 2007 |

Adaptive finite element simulation of ventricular fibrillation dynamics P Deuflhard, B Erdmann, R Roitzsch, GT Lines Computing and visualization in science 12 (5), 201-205, 2009 | 56 | 2009 |

Control of Ca2+ release by action potential configuration in normal and failing murine cardiomyocytes WE Louch, J Hake, GF Jølle, HK Mørk, I Sjaastad, GT Lines, OM Sejersted Biophysical journal 99 (5), 1377-1386, 2010 | 49 | 2010 |

AMICI: high-performance sensitivity analysis for large ordinary differential equation models F Fröhlich, D Weindl, Y Schälte, D Pathirana, Ł Paszkowski, GT Lines, ... Bioinformatics 37 (20), 3676-3677, 2021 | 46 | 2021 |

Stochastic binding of Ca2+ ions in the dyadic cleft; continuous versus random walk description of diffusion J Hake, GT Lines Biophysical journal 94 (11), 4184-4201, 2008 | 39 | 2008 |

A condition for setting off ectopic waves in computational models of excitable cells A Tveito, GT Lines Mathematical Biosciences 213 (2), 141-150, 2008 | 37 | 2008 |

Mathematical models of cardiac pacemaking function P Li, GT Lines, MM Maleckar, A Tveito Frontiers in Physics 1, 20, 2013 | 27 | 2013 |

Scalable heterogeneous CPU-GPU computations for unstructured tetrahedral meshes J Langguth, M Sourouri, GT Lines, SB Baden, X Cai IEEE Micro 35 (4), 6-15, 2015 | 23 | 2015 |