Evangelos Latos
Evangelos Latos
Email verificata su uni-graz.at - Home page
Titolo
Citata da
Citata da
Anno
Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling
K Fellner, E Latos, BQ Tang
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 35 (3), 643-673, 2018
25*2018
Global existence and asymptotic behavior of solutions to a nonlocal Fisher–KPP type problem
S Bian, L Chen, EA Latos
Nonlinear Analysis: Theory, Methods & Applications 149, 165-176, 2017
222017
Global classical solutions for mass-conserving,(super)-quadratic reaction-diffusion systems in three and higher space dimensions
K Fellner, E Latos, T Suzuki
arXiv preprint arXiv:1511.04349, 2015
202015
Global dynamics of a reaction–diffusion system with mass conservation
E Latos, T Suzuki
Journal of Mathematical Analysis and Applications 411 (1), 107-118, 2014
162014
Transient and asymptotic dynamics of a prey–predator system with diffusion
E Latos, T Suzuki, Y Yamada
Mathematical Methods in the Applied Sciences 35 (9), 1101-1109, 2012
142012
Existence and blow-up of solutions for a non-local filtration and porous medium problem
EA Latos, DE Tzanetis
Proceedings of the Edinburgh Mathematical Society 53 (1), 195-209, 2010
92010
Stability and spectral comparison of a reaction–diffusion system with mass conservation
E Latos, Y Morita, T Suzuki
Journal of Dynamics and Differential Equations 30 (2), 823-844, 2018
8*2018
Wavefronts for a nonlinear nonlocal bistable reaction–diffusion equation in population dynamics
J Li, E Latos, L Chen
Journal of Differential Equations 263 (10), 6427-6455, 2017
82017
Global regularity and convergence to equilibrium of reaction–diffusion systems with nonlinear diffusion
K Fellner, E Latos, BQ Tang
Journal of Evolution Equations, 1-47, 2019
62019
Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source
EA Latos, DE Tzanetis
Nonlinear Differential Equations and Applications NoDEA 17 (2), 137-151, 2010
42010
Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system
S Bian, L Chen, EA Latos
Nonlinear Analysis 176, 178-191, 2018
22018
Chemotaxis model with nonlocal nonlinear reaction in the whole space
S Bian, L Chen, EA Latos
Discrete & Continuous Dynamical Systems-A 38 (10), 5067, 2018
22018
Chemotaxis with quadratic dissipation and logistic source
E Latos, T Suzuki
Advances in Mathematical Sciences and Applications 25, 207-227, 2016
22016
Existence and blow-up of solutions for a Semilinear Filtration problem
EA Latos, DE Tzanetis
Electronic Journal of Differential Equations 2013 (178), 1-20, 2013
22013
On a class of reaction-diffusion equations with aggregation
L Chen, L Desvillettes, E Latos
Advanced Nonlinear Studies 1 (ahead-of-print), 2020
12020
Diffusion-driven blow-up for a non-local fisher-kpp type model
NI Kavallaris, EA Latos
arXiv preprint arXiv:1905.05495, 2019
12019
On the finite time blow-up for filtration problems with nonlinear reaction
K Fellner, E Latos, G Pisante
Applied Mathematics Letters 42, 47-52, 2015
12015
Quasilinear Reaction Diffusion Systems with Mass Dissipation
E Latos, T Suzuki
arXiv preprint arXiv:2103.02736, 2021
2021
Nonlocal reaction preventing blow-up in the supercritical case of chemotaxis
EA Latos
arXiv preprint arXiv:2011.10764, 2020
2020
Mass conservative reaction diffusion systems describing cell polarity
E Latos, T Suzuki
arXiv preprint arXiv:2006.12907, 2020
2020
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20