Wasserstein of Wasserstein Loss for Learning Generative Models Y Dukler, W Li, A Tong Lin, G Montúfar International Conference on Machine Learning 97 (PMLR), 1716-1725, 2019 | 32 | 2019 |
Optimization Theory for ReLU Neural Networks Trained with Normalization Layers Y Dukler, Q Gu, G Montúfar arXiv preprint arXiv:2006.06878, 2020 | 21 | 2020 |
Theory for undercompressive shocks in tears of wine Y Dukler, H Ji, C Falcon, AL Bertozzi Physical Review Fluids 5 (3), 034002, 2020 | 14 | 2020 |
Automatic valve segmentation in cardiac ultrasound time series data Y Dukler, Y Ge, Y Qian, S Yamamoto, B Yuan, L Zhao, AL Bertozzi, ... Medical Imaging 2018: Image Processing 10574, 105741Y, 2018 | 8 | 2018 |
DIVA: Dataset Derivative of a Learning Task Y Dukler, A Achille, G Paolini, A Ravichandran, M Polito, S Soatto arXiv preprint arXiv:2111.09785, 2021 | 3 | 2021 |
Wasserstein Diffusion Tikhonov Regularization AT Lin, Y Dukler, W Li, G Montúfar arXiv preprint arXiv:1909.06860, 2019 | 3 | 2019 |
SAFE: Machine unlearning with shard graphs Y Dukler, B Bowman, A Achille, A Golatkar, A Swaminathan, S Soatto arXiv preprint arXiv:2304.13169, 2023 | 2 | 2023 |
Introspective cross-attention probing for lightweight transfer of pre-trained models Y Dukler, A Achille, H Yang, V Vivek, L Zancato, B Bowman, ... arXiv preprint arXiv:2303.04105, 2023 | 2 | 2023 |
Learning Expressive Prompting With Residuals for Vision Transformers R Das, Y Dukler, A Ravichandran, A Swaminathan arXiv preprint arXiv:2303.15591, 2023 | 1 | 2023 |
Tears of wine and shock dynamics Y Dukler, A Bertozzi, H Ji APS Meeting Abstracts, 2019 | | 2019 |