Neural networks with a redundant representation: detecting the undetectable E Agliari, F Alemanno, A Barra, M Centonze, A Fachechi Physical review letters 124 (2), 028301, 2020 | 24 | 2020 |
Generalized Guerra’s interpolation schemes for dense associative neural networks E Agliari, F Alemanno, A Barra, A Fachechi Neural Networks 128, 254-267, 2020 | 23 | 2020 |
Dreaming neural networks: rigorous results E Agliari, F Alemanno, A Barra, A Fachechi Journal of Statistical Mechanics: Theory and Experiment 2019 (8), 083503, 2019 | 16 | 2019 |
The emergence of a concept in shallow neural networks E Agliari, F Alemanno, A Barra, G De Marzo Neural Networks 148, 232-253, 2022 | 14 | 2022 |
A transport equation approach for deep neural networks with quenched random weights E Agliari, L Albanese, F Alemanno, A Fachechi Journal of Physics A: Mathematical and Theoretical 54 (50), 505004, 2021 | 9* | 2021 |
Replica symmetry breaking in dense hebbian neural networks L Albanese, F Alemanno, A Alessandrelli, A Barra Journal of Statistical Physics 189 (2), 24, 2022 | 6 | 2022 |
Supervised hebbian learning F Alemanno, M Aquaro, I Kanter, A Barra, E Agliari Europhysics Letters, 2022 | 5* | 2022 |
Interpolating between Boolean and extremely high noisy patterns through minimal dense associative memories F Alemanno, M Centonze, A Fachechi Journal of Physics A: Mathematical and Theoretical 53 (7), 074001, 2020 | 4 | 2020 |
Fully automated computational approach for precisely measuring organelle acidification with optical ph sensors A Chandra, S Prasad, F Alemanno, M De Luca, R Rizzo, R Romano, ... ACS Applied Materials & Interfaces 14 (16), 18133-18149, 2022 | 3 | 2022 |
On the Marchenko–Pastur law in analog bipartite spin-glasses E Agliari, F Alemanno, A Barra, A Fachechi Journal of Physics A: Mathematical and Theoretical 52 (25), 254002, 2019 | 3 | 2019 |
Analysis of temporal correlation in heart rate variability through maximum entropy principle in a minimal pairwise glassy model E Agliari, F Alemanno, A Barra, OA Barra, A Fachechi, LF Vento, L Moretti Scientific Reports 10 (1), 15353, 2020 | 2 | 2020 |
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning E Agliari, L Albanese, F Alemanno, A Alessandrelli, A Barra, F Giannotti, ... arXiv preprint arXiv:2211.14067, 2022 | 1 | 2022 |
Outperforming RBM Feature-Extraction Capabilities by “Dreaming” Mechanism A Fachechi, A Barra, E Agliari, F Alemanno IEEE Transactions on Neural Networks and Learning Systems, 2022 | 1 | 2022 |
Recurrent neural networks that generalize from examples and optimize by dreaming M Aquaro, F Alemanno, I Kanter, F Durante, E Agliari, A Barra arXiv preprint arXiv:2204.07954, 2022 | 1 | 2022 |
Quantifying heterogeneity to drug response in cancer–stroma kinetics F Alemanno, M Cavo, D Delle Cave, A Fachechi, R Rizzo, E D’Amone, ... Proceedings of the National Academy of Sciences 120 (11), e2122352120, 2023 | | 2023 |
Probing Single-Cell Fermentation Fluxes and Exchange Networks via pH-Sensing Hybrid Nanofibers V Onesto, S Forciniti, F Alemanno, K Narayanankutty, A Chandra, ... ACS nano, 2022 | | 2022 |
Microgel-based in vitro tumoroid platform for real time assessment of drug sensitivity and resistance A Chandra, S Prasad, F Alemanno, A Barra, E Lonardo, E Parasido, ... Cancer Research 80 (16_Supplement), 2967-2967, 2020 | | 2020 |
Quantifying stroma-tumor cell interactions in three-dimensional cell culture systems. MM Cavo, F Alemanno, D Delle Cave, E D'Amone, A Barra, E Lonardo, ... CANCER RESEARCH 80 (11), 53-54, 2020 | | 2020 |
Abstract A48: Quantifying stroma-tumor cell interactions in three-dimensional cell culture systems MM Cavo, F Alemanno, DD Cave, E D'Amone, A Barra, E Lonardo, ... Cancer Research 80 (11_Supplement), A48-A48, 2020 | | 2020 |
Dense Hebbian Neural Networks: A Replica Symmetric Picture of Unsupervised Learning A Barra, E Agliari, L Albanese, F Alemanno, A Alessandrelli, F Giannotti, ... Available at SSRN 4357714, 0 | | |