Irina Higgins
Titolo
Citata da
Citata da
Anno
beta-vae: Learning basic visual concepts with a constrained variational framework
I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, ...
17342016
Understanding disentangling in -VAE
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
3662018
Darla: Improving zero-shot transfer in reinforcement learning
I Higgins, A Pal, A Rusu, L Matthey, C Burgess, A Pritzel, M Botvinick, ...
International Conference on Machine Learning, 1480-1490, 2017
2232017
Towards a definition of disentangled representations
I Higgins, D Amos, D Pfau, S Racaniere, L Matthey, D Rezende, ...
arXiv preprint arXiv:1812.02230, 2018
1342018
dSprites - Disentanglement testing Sprites dataset
L Matthey, I Higgins, D Hassabis, A Lercher
https://github.com/deepmind/dsprites-dataset, 2017
1332017
Monet: Unsupervised scene decomposition and representation
CP Burgess, L Matthey, N Watters, R Kabra, I Higgins, M Botvinick, ...
arXiv preprint arXiv:1901.11390, 2019
1182019
Scan: Learning hierarchical compositional visual concepts
I Higgins, N Sonnerat, L Matthey, A Pal, CP Burgess, M Bosnjak, ...
arXiv preprint arXiv:1707.03389, 2017
92*2017
Hamiltonian generative networks
P Toth, DJ Rezende, A Jaegle, S Racaničre, A Botev, I Higgins
arXiv preprint arXiv:1909.13789, 2019
622019
Life-long disentangled representation learning with cross-domain latent homologies
A Achille, T Eccles, L Matthey, CP Burgess, N Watters, A Lerchner, ...
arXiv preprint arXiv:1808.06508, 2018
532018
Equivariant hamiltonian flows
DJ Rezende, S Racaničre, I Higgins, P Toth
arXiv preprint arXiv:1909.13739, 2019
182019
Unsupervised Model Selection for Variational Disentangled Representation Learning
S Duan, L Matthey, A Saraiva, N Watters, CP Burgess, A Lerchner, ...
arXiv preprint arXiv:1905.12614, 2019
17*2019
The Multi-Entity Variational Autoencoder
C Nash, A Eslami, CP Burgess, I Higgins, D Zoran, W Theophane, ...
http://charlienash.github.io/assets/docs/mevae2017.pdf, 2017
152017
Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain
I Higgins, S Stringer, J Schnupp
PLoS One 12 (8), e0180174, 2017
102017
The role of independent motion in object segmentation in the ventral visual stream: Learning to recognise the separate parts of the body
IV Higgins, SM Stringer
Vision research 51 (6), 553-562, 2011
92011
Learning view invariant recognition with partially occluded objects
JM Tromans, I Higgins, SM Stringer
Frontiers in computational neuroscience 6, 48, 2012
72012
Disentangled cumulants help successor representations transfer to new tasks
C Grimm, I Higgins, A Barreto, D Teplyashin, M Wulfmeier, T Hertweck, ...
arXiv preprint arXiv:1911.10866, 2019
62019
Harmonic training and the formation of pitch representation in a neural network model of the auditory brain
N Ahmad, I Higgins, KMM Walker, SM Stringer
Frontiers in computational neuroscience 10, 24, 2016
62016
Disentangling by Subspace Diffusion
D Pfau, I Higgins, A Botev, S Racaničre
arXiv preprint arXiv:2006.12982, 2020
52020
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal neurons
I Higgins, L Chang, V Langston, D Hassabis, C Summerfield, D Tsao, ...
arXiv preprint arXiv:2006.14304, 2020
42020
Training variational autoencoders to generate disentangled latent factors
L Matthey-de-l'Endroit, AT Pal, S Mohamed, X Glorot, I Higgins, ...
US Patent 10,373,055, 2019
22019
Il sistema al momento non puņ eseguire l'operazione. Riprova pił tardi.
Articoli 1–20