Segui
Christian Szegedy
Christian Szegedy
Researcher
Email verificata su szegedy.org
Titolo
Citata da
Citata da
Anno
Going deeper with convolutions
C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2015
573982015
Batch normalization: Accelerating deep network training by reducing internal covariate shift
S Ioffe, C Szegedy
International conference on machine learning, 448-456, 2015
535072015
Ssd: Single shot multibox detector
W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, CY Fu, AC Berg
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
365162016
Rethinking the inception architecture for computer vision
C Szegedy, V Vanhoucke, S Ioffe, J Shlens, Z Wojna
Proceedings of the IEEE conference on computer vision and pattern …, 2016
316492016
Explaining and harnessing adversarial examples
IJ Goodfellow, J Shlens, C Szegedy
arXiv preprint arXiv:1412.6572, 2014
194272014
Inception-v4, inception-resnet and the impact of residual connections on learning
C Szegedy, S Ioffe, V Vanhoucke, A Alemi
Proceedings of the AAAI conference on artificial intelligence 31 (1), 2017
163912017
Intriguing properties of neural networks
C Szegedy, W Zaremba, I Sutskever, J Bruna, D Erhan, I Goodfellow, ...
arXiv preprint arXiv:1312.6199, 2013
156182013
Deeppose: Human pose estimation via deep neural networks
A Toshev, C Szegedy
Proceedings of the IEEE conference on computer vision and pattern …, 2014
35412014
Deep neural networks for object detection
C Szegedy, A Toshev, D Erhan
Advances in neural information processing systems 26, 2013
19712013
European conference on computer vision
W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, CY Fu, AC Berg
Face detection with end-to-end integration of a convnet and a 3d model, 2016
15642016
Scalable object detection using deep neural networks
D Erhan, C Szegedy, A Toshev, D Anguelov
Proceedings of the IEEE conference on computer vision and pattern …, 2014
15362014
Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015
S Ioffe, C Szegedy
arXiv preprint arXiv:1502.03167, 2015
11462015
Training deep neural networks on noisy labels with bootstrapping
S Reed, H Lee, D Anguelov, C Szegedy, D Erhan, A Rabinovich
arXiv preprint arXiv:1412.6596, 2014
11012014
Scalable, high-quality object detection
C Szegedy, S Reed, D Erhan, D Anguelov, S Ioffe
arXiv preprint arXiv:1412.1441, 2014
5412014
Intriguing properties of neural networks. arXiv 2013
C Szegedy, W Zaremba, I Sutskever, J Bruna, D Erhan, I Goodfellow, ...
arXiv preprint arXiv:1312.6199 103, 2013
3072013
Going deeper with convolutions. arXiv 2014
C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ...
arXiv preprint arXiv:1409.4842 12, 0
252
Deepmath-deep sequence models for premise selection
G Irving, C Szegedy, AA Alemi, N Eén, F Chollet, J Urban
Advances in neural information processing systems 29, 2016
246*2016
Rethinking the inception architecture for computer vision. 2015
C Szegedy, V Vanhoucke, S Ioffe, J Shlens, Z Wojna
arXiv preprint arXiv:1512.00567, 2015
2162015
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ...
Going deeper with convolutions. in, 2015
2132015
Going deeper with convolutions (2014)
C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ...
arXiv preprint arXiv:1409.4842 10, 2014
2132014
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20