Segui
Philip Sellars
Philip Sellars
Email verificata su cam.ac.uk
Titolo
Citata da
Citata da
Anno
Superpixel contracted graph-based learning for hyperspectral image classification
P Sellars, AI Aviles-Rivero, CB Schönlieb
IEEE Transactions on Geoscience and Remote Sensing 58 (6), 4180-4193, 2020
402020
GraphX $$^\mathbf {\small NET}-$$ Chest X-Ray Classification Under Extreme Minimal Supervision
AI Aviles-Rivero, N Papadakis, R Li, P Sellars, Q Fan, RT Tan, ...
International Conference on Medical Image Computing and Computer-Assisted …, 2019
362019
GraphXCOVID: explainable deep graph diffusion pseudo-labelling for identifying COVID-19 on chest X-rays
AI Aviles-Rivero, P Sellars, CB Schönlieb, N Papadakis
Pattern Recognition 122, 108274, 2022
172022
Laplacenet: A hybrid energy-neural model for deep semi-supervised classification
P Sellars, AI Aviles-Rivero, CB Schönlieb
arXiv preprint arXiv:2106.04527, 2021
92021
Two cycle learning: clustering based regularisation for deep semi-supervised classification
P Sellars, A Aviles-Rivero, CB Schönlieb
arXiv preprint arXiv:2001.05317, 2020
72020
Semi-supervised learning with graphs: Covariance based superpixels for hyperspectral image classification
P Sellars, AI Aviles-Rivero, N Papadakis, D Coomes, A Faul, ...
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium …, 2019
42019
The GraphNet zoo: an all-in-one graph based deep semi-supervised framework for medical image classification
M Vriendt, P Sellars, AI Aviles-Rivero
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and …, 2020
32020
Energy models for better pseudo-labels: Improving semi-supervised classification with the 1-Laplacian graph energy
AI Aviles-Rivero, N Papadakis, R Li, P Sellars, SM Alsaleh, RT Tan, ...
arXiv preprint arXiv:1906.08635, 2019
12019
Minimal Labels, Maximum Gain. Image Classification with Graph-Based Semi-Supervised Learning
P Sellars
University of Cambridge, 2022
2022
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–9