The kinetics human action video dataset W Kay, J Carreira, K Simonyan, B Zhang, C Hillier, S Vijayanarasimhan, ... arXiv preprint arXiv:1705.06950, 2017 | 4553 | 2017 |
Teaching machines to read and comprehend KM Hermann, T Kocisky, E Grefenstette, L Espeholt, W Kay, M Suleyman, ... Advances in neural information processing systems 28, 2015 | 4072 | 2015 |
International evaluation of an AI system for breast cancer screening SM McKinney, M Sieniek, V Godbole, J Godwin, N Antropova, H Ashrafian, ... Nature 577 (7788), 89-94, 2020 | 2554 | 2020 |
Clinically applicable deep learning for diagnosis and referral in retinal disease J De Fauw, JR Ledsam, B Romera-Paredes, S Nikolov, N Tomasev, ... Nature medicine 24 (9), 1342-1350, 2018 | 2434 | 2018 |
Key challenges for delivering clinical impact with artificial intelligence CJ Kelly, A Karthikesalingam, M Suleyman, G Corrado, D King BMC medicine 17, 1-9, 2019 | 1679 | 2019 |
A clinically applicable approach to continuous prediction of future acute kidney injury N Tomašev, X Glorot, JW Rae, M Zielinski, H Askham, A Saraiva, ... Nature 572 (7767), 116-119, 2019 | 903 | 2019 |
Massively parallel methods for deep reinforcement learning A Nair, P Srinivasan, S Blackwell, C Alcicek, R Fearon, A De Maria, ... arXiv preprint arXiv:1507.04296, 2015 | 643 | 2015 |
Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy S Nikolov, S Blackwell, A Zverovitch, R Mendes, M Livne, J De Fauw, ... arXiv preprint arXiv:1809.04430, 2018 | 357 | 2018 |
Learning to transduce with unbounded memory E Grefenstette, KM Hermann, M Suleyman, P Blunsom Advances in neural information processing systems 28, 2015 | 350 | 2015 |
Predicting conversion to wet age-related macular degeneration using deep learning J Yim, R Chopra, T Spitz, J Winkens, A Obika, C Kelly, H Askham, M Lukic, ... Nature Medicine 26 (6), 892-899, 2020 | 261 | 2020 |
Clinically applicable segmentation of head and neck anatomy for radiotherapy: deep learning algorithm development and validation study S Nikolov, S Blackwell, A Zverovitch, R Mendes, M Livne, J De Fauw, ... Journal of medical Internet research 23 (7), e26151, 2021 | 201 | 2021 |
The kinetics human action video dataset. arXiv 2017 W Kay, J Carreira, K Simonyan, B Zhang, C Hillier, S Vijayanarasimhan, ... arXiv preprint arXiv:1705.06950, 2017 | 149 | 2017 |
Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records N Tomašev, N Harris, S Baur, A Mottram, X Glorot, JW Rae, M Zielinski, ... Nature Protocols 16 (6), 2765-2787, 2021 | 75 | 2021 |
The kinetics human action video dataset A Zisserman, J Carreira, K Simonyan, W Kay, B Zhang, C Hillier, ... arXiv preprint arXiv 1705, 2017 | 50 | 2017 |
Generalizable medical image analysis using segmentation and classification neural networks J De Fauw, JR Ledsam, B Romera-Paredes, S Nikolov, N Tomasev, ... US Patent 10,198,832, 2019 | 48 | 2019 |
Research priorities for robust and beneficial artificial intelligence: an open letter S Russell, T Dietterich, E Horvitz, B Selman, F Rossi, D Hassabis, S Legg, ... AI Magazine 36 (4), 3-4, 2015 | 42 | 2015 |
Distributed training of reinforcement learning systems PD Srinivasan, R Fearon, C Alcicek, AS Nair, S Blackwell, ... US Patent 10,445,641, 2019 | 38 | 2019 |
Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissions A Connell, H Montgomery, P Martin, C Nightingale, O Sadeghi-Alavijeh, ... NPJ digital medicine 2 (1), 67, 2019 | 38 | 2019 |
Method and Apparatus for Conducting a Search M Suleyman, BK Suleyman US Patent App. 13/804,382, 2014 | 28 | 2014 |
Letter to the editor: Research priorities for robust and beneficial artificial intelligence: An open letter S Russell, T Dietterich, E Horvitz, B Selman, F Rossi, D Hassabis, S Legg, ... Ai Magazine 36 (4), 3-4, 2015 | 27 | 2015 |