Follow
Marwin Segler
Marwin Segler
Microsoft Research AI4Science
Verified email at microsoft.com
Title
Cited by
Cited by
Year
Opportunities and obstacles for deep learning in biology and medicine
T Ching, DS Himmelstein, BK Beaulieu-Jones, AA Kalinin, BT Do, ...
Journal of The Royal Society Interface 15 (141), 20170387, 2018
15812018
Planning chemical syntheses with deep neural networks and symbolic AI
MHS Segler, M Preuss, MP Waller
Nature 555 (7698), 604-610, 2018
13152018
Generating focused molecule libraries for drug discovery with recurrent neural networks
MHS Segler, T Kogej, C Tyrchan, MP Waller
ACS central science 4 (1), 120-131, 2018
11002018
GuacaMol: benchmarking models for de novo molecular design
N Brown, M Fiscato, MHS Segler, AC Vaucher
Journal of chemical information and modeling 59 (3), 1096-1108, 2019
4812019
Neural‐symbolic machine learning for retrosynthesis and reaction prediction
MHS Segler, MP Waller
Chemistry–A European Journal 23 (25), 5966-5971, 2017
4162017
Modelling Chemical Reasoning to Predict and Invent Reactions
MHS Segler, MP Waller
Chemistry - A European Journal 23 (25), 6118-6128, 2016
1782016
Machine learning the ropes: principles, applications and directions in synthetic chemistry
F Strieth-Kalthoff, F Sandfort, MHS Segler, F Glorius
Chemical Society Reviews 49 (17), 6154-6168, 2020
1282020
Artificial intelligence in drug discovery
MA Sellwood, M Ahmed, MHS Segler, N Brown
Future medicinal chemistry 10 (17), 2025-2028, 2018
872018
A model to search for synthesizable molecules
J Bradshaw, B Paige, MJ Kusner, M Segler, JM Hernández-Lobato
Advances in Neural Information Processing Systems 32, 2019
842019
Exploring deep recurrent models with reinforcement learning for molecule design
D Neil, M Segler, L Guasch, M Ahmed, D Plumbley, M Sellwood, N Brown
732018
Molecular representation learning with language models and domain-relevant auxiliary tasks
B Fabian, T Edlich, H Gaspar, M Segler, J Meyers, M Fiscato, M Ahmed
arXiv preprint arXiv:2011.13230, 2020
592020
A generative model for electron paths
J Bradshaw, MJ Kusner, B Paige, MHS Segler, JM Hernández-Lobato
arXiv preprint arXiv:1805.10970, 2018
59*2018
Defactor: Differentiable edge factorization-based probabilistic graph generation
R Assouel, M Ahmed, MH Segler, A Saffari, Y Bengio
arXiv preprint arXiv:1811.09766, 2018
552018
Improving few-and zero-shot reaction template prediction using modern hopfield networks
P Seidl, P Renz, N Dyubankova, P Neves, J Verhoeven, JK Wegner, ...
Journal of chemical information and modeling 62 (9), 2111-2120, 2022
45*2022
Barking up the right tree: an approach to search over molecule synthesis dags
J Bradshaw, B Paige, MJ Kusner, M Segler, JM Hernández-Lobato
Advances in neural information processing systems 33, 6852-6866, 2020
402020
Towards" alphachem": Chemical synthesis planning with tree search and deep neural network policies
M Segler, M Preuß, MP Waller
arXiv preprint arXiv:1702.00020, 2017
382017
Learning to extend molecular scaffolds with structural motifs
K Maziarz, H Jackson-Flux, P Cameron, F Sirockin, N Schneider, N Stiefl, ...
arXiv preprint arXiv:2103.03864, 2021
352021
Fs-mol: A few-shot learning dataset of molecules
M Stanley, JF Bronskill, K Maziarz, H Misztela, J Lanini, M Segler, ...
Thirty-fifth Conference on Neural Information Processing Systems Datasets …, 2021
332021
Silver-catalyzed 1, 3-dipolar cycloaddition of azomethine ylides with β-boryl acrylates
A Lopez-Perez, M Segler, J Adrio, JC Carretero
The Journal of Organic Chemistry 76 (6), 1945-1948, 2011
302011
Retrognn: fast estimation of synthesizability for virtual screening and de novo design by learning from slow retrosynthesis software
CH Liu, M Korablyov, S Jastrzębski, P Włodarczyk-Pruszyński, Y Bengio, ...
Journal of Chemical Information and Modeling 62 (10), 2293-2300, 2022
23*2022
The system can't perform the operation now. Try again later.
Articles 1–20