Quantum integrable systems related to Lie algebras MA Olshanetsky, AM Perelomov Physics Reports 94 (6), 313-404, 1983 | 1071 | 1983 |
Classical integrable finite-dimensional systems related to Lie algebras MA Olshanetsky, AM Perelomov Physics Reports 71 (5), 313-400, 1981 | 840 | 1981 |
Two-dimensional generalized Toda lattice AV Mikhailov, MA Olshanetsky, AM Perelomov Communications in Mathematical Physics 79, 473-488, 1981 | 459 | 1981 |
Ordinary differential equations and smooth dynamical systems DV Anosov, SK Aranson, VI Arnold, IU Bronshtein, YS Il'yashenko, ... Springer-Verlag New York, Inc., 1997 | 385* | 1997 |
Wess-Zumino-Witten model as a theory of free fields A Gerasimov, A Morozov, M Olshanetsky, A Marshakov, S Shatashvili International Journal of Modern Physics A 5 (13), 2495-2589, 1990 | 320 | 1990 |
Completely integrable Hamiltonian systems connected with semisimple Lie algebras MA Olshanetsky, AM Perelomov Inventiones mathematicae 37 (2), 93-108, 1976 | 300 | 1976 |
Quantum completely integrable systems connected with semi-simple Lie algebras MA Olshanetsky, AM Perelomov Letters in Mathematical Physics 2, 7-13, 1977 | 145 | 1977 |
Explicit solutions of classical generalized Toda models MA Olshanetsky, AM Perelomov Inventiones mathematicae 54 (3), 261-269, 1979 | 142 | 1979 |
Supersymmetric two-dimensional Toda lattice MA Olshanetsky Communications in Mathematical Physics 88, 63-76, 1983 | 139 | 1983 |
Properties of the zeros of the classical polynomials and of the Bessel functions S Ahmed, M Bruschi, F Calogero, MA Olshanetsky, AM Perelomov Nuovo Cimento B;(Italy) 49 (2), 1979 | 107 | 1979 |
Hitchin systems–symplectic Hecke correspondence and two-dimensional version AM Levin, MA Olshanetsky, A Zotov Communications in mathematical physics 236, 93-133, 2003 | 104 | 2003 |
Hitchin systems–symplectic Hecke correspondence and two-dimensional version AM Levin, MA Olshanetsky, A Zotov Communications in mathematical physics 236, 93-133, 2003 | 104 | 2003 |
Completely integrable Hamiltonian systems connected with semisimple Lie algebras, Inventions Math. 37 (1976) 93–108; MA Olshanetsky, AM Perelomov, Classical integrable finite … MA Olshanetsky Phys. Rep. C 71, 314-400, 1981 | 104 | 1981 |
Description of a class of superstring compactifications related to semi-simple Lie algebras DG Markushevich, MA Olshanetsky, AM Perelomov Communications in Mathematical Physics 111, 247-274, 1987 | 103 | 1987 |
Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature MA Olshanetsky, AM Perelomov Lettere al Nuovo Cimento (1971-1985) 16, 333-339, 1976 | 103 | 1976 |
Quantum systems related to root systems and radial parts of Laplace operators MA Olshanetsky, AM Perelomov arXiv preprint math-ph/0203031, 2002 | 67 | 2002 |
Quantum integrable systems related to Lie algebras MA Olshanetsky, AM Perelomov Phys. Rep 94 (1), 983, 0 | 65 | |
Hierarchies of isomonodromic deformations and Hitchin systems AY Mozorov, MA Olshanetsky, AM Levin Moscow Seminar in Mathematical Physics, 223-262, 1999 | 60 | 1999 |
Magnetic collapse near zero points of the magnetic field SV Bulanov, MA Olshanetsky Physics Letters A 100 (1), 35-38, 1984 | 51 | 1984 |
Dynamical Systems VII: Integrable Systems Nonholonomic Dynamical Systems VI Arnolʹd, SP Novikov Springer, 1994 | 50* | 1994 |