Segui
Carlo Vanoni
Carlo Vanoni
PhD Student in Statistical Physics, SISSA
Email verificata su sissa.it - Home page
Titolo
Citata da
Citata da
Anno
Localization and melting of interfaces in the two-dimensional quantum Ising model
F Balducci, A Gambassi, A Lerose, A Scardicchio, C Vanoni
Phys. Rev. Lett. 129, 120601 129 (12), 120601, 2022
122022
Interface dynamics in the two-dimensional quantum Ising model
F Balducci, A Gambassi, A Lerose, A Scardicchio, C Vanoni
Physical Review B 107 (2), 024306, 2023
72023
Renormalization group analysis of the Anderson model on random regular graphs
C Vanoni, BL Altshuler, VE Kravtsov, A Scardicchio
arXiv preprint arXiv:2306.14965, 2023
42023
Localization in the Discrete Non-Linear Schr÷dinger Equation and geometric properties of the microcanonical surface
C Arezzo, F Balducci, R Piergallini, A Scardicchio, C Vanoni
Journal of Statistical Physics 186 (2), 24, 2022
32022
Average optimal cost for the Euclidean TSP in one dimension
S Caracciolo, A Di Gioacchino, EM Malatesta, C Vanoni
Journal of Physics A: Mathematical and Theoretical 52 (26), 264003, 2019
32019
Slow melting of a disordered quantum crystal
F Balducci, A Scardicchio, C Vanoni
Physical Review B 107 (2), 024201, 2023
22023
A hydrodynamic approach to Stark localization
L Capizzi, C Vanoni, P Calabrese, A Gambassi
Journal of Statistical Mechanics: Theory and Experiment 2023 (7), 073104, 2023
12023
An analysis of localization transitions using non-parametric unsupervised learning
C Vanoni, V Vitale
arXiv preprint arXiv:2311.16050, 2023
2023
Localization in the Discrete Non-Linear Schroedinger Equation and geometric properties of the microcanonical surface
F Balducci, A Scardicchio, C Arezzo, C Vanoni, R Piergallini
APS March Meeting Abstracts 2022, N08. 008, 2022
2022
Localization and Ergodicity in the Discrete non-linear Schroedinger Equation
C Vanoni
University of Milan, 2020
2020
Monopartite Euclidean Travelling Salesman Problem in One Dimension
C Vanoni
University of Milan, 2018
2018
Il sistema al momento non pu˛ eseguire l'operazione. Riprova pi¨ tardi.
Articoli 1–11