Follow
Martin Takáč
Martin Takáč
Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)
Verified email at mbzuai.ac.ae - Homepage
Title
Cited by
Cited by
Year
Reinforcement learning for solving the vehicle routing problem
M Nazari, A Oroojlooy, LV Snyder, M Takáč
Conference on Neural Information Processing Systems, NeurIPS 2018, 2018
8702018
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
P Richtárik, M Takáč
Mathematical Programming 144 (1-2), 1-38, 2014
8342014
SARAH: A novel method for machine learning problems using stochastic recursive gradient
L Nguyen, J Liu, K Scheinberg, M Takáč
In 34th International Conference on Machine Learning, ICML 2017, 2017
5422017
Parallel coordinate descent methods for big data optimization
P Richtárik, M Takáč
Mathematical Programming, Series A, 1-52, 2015
5262015
Communication-efficient distributed dual coordinate ascent
M Jaggi, V Smith, M Takác, J Terhorst, S Krishnan, T Hofmann, MI Jordan
Advances in neural information processing systems 27, 2014
3952014
Mini-batch semi-stochastic gradient descent in the proximal setting
J Konečný, J Liu, P Richtárik, M Takáč
IEEE Journal of Selected Topics in Signal Processing 10 (2), 242-255, 2015
3142015
CoCoA: A general framework for communication-efficient distributed optimization
V Smith, S Forte, M Chenxin, M Takáč, MI Jordan, M Jaggi
Journal of Machine Learning Research 18, 230, 2018
2682018
Distributed coordinate descent method for learning with big data
P Richtárik, M Takác
Journal of Machine Learning Research 17, 1-25, 2016
2542016
Mini-batch primal and dual methods for SVMs
M Takáč, A Bijral, P Richtárik, N Srebro
In 30th International Conference on Machine Learning, ICML 2013, 2013
206*2013
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption
LM Nguyen, PH Nguyen, M van Dijk, P Richtárik, K Scheinberg, M Takáč
In 34th International Conference on Machine Learning, ICML 2018, 2018
1992018
Adding vs. averaging in distributed primal-dual optimization
C Ma, V Smith, M Jaggi, MI Jordan, P Richtárik, M Takáč
In 32nd International Conference on Machine Learning, ICML 2015, 2015
1982015
Distributed optimization with arbitrary local solvers
C Ma, J Konečný, M Jaggi, V Smith, MI Jordan, P Richtárik, M Takáč
optimization Methods and Software 32 (4), 813-848, 2017
1932017
Distributed learning with compressed gradient differences
K Mishchenko, E Gorbunov, M Takáč, P Richtárik
arXiv preprint arXiv:1901.09269, 2019
1842019
A Multi-Batch L-BFGS Method for Machine Learning
AS Berahas, J Nocedal, M Takáč
The Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), 2016
1402016
On optimal probabilities in stochastic coordinate descent methods
P Richtárik, M Takáč
Optimization Letters, 2015, 1-11, 2015
1322015
Applying deep learning to the newsvendor problem
A Oroojlooyjadid, LV Snyder, M Takáč
IISE Transactions 52 (4), 444-463, 2020
1242020
SDNA: stochastic dual newton ascent for empirical risk minimization
Z Qu, P Richtárik, M Takáč, O Fercoq
In 33rd International Conference on Machine Learning, ICML 2016, 2016
1092016
Stochastic recursive gradient algorithm for nonconvex optimization
LM Nguyen, J Liu, K Scheinberg, M Takáč
arXiv preprint arXiv:1705.07261, 2017
982017
Stochastic reformulations of linear systems: algorithms and convergence theory
P Richtárik, M Takác
SIAM Journal on Matrix Analysis and Applications 41 (2), 487-524, 2020
852020
A deep q-network for the beer game: Deep reinforcement learning for inventory optimization
A Oroojlooyjadid, MR Nazari, LV Snyder, M Takáč
Manufacturing & Service Operations Management 24 (1), 285-304, 2022
842022
The system can't perform the operation now. Try again later.
Articles 1–20