Jarno Lintusaari
Jarno Lintusaari
Verified email at aalto.fi
Cited by
Cited by
Fundamentals and recent developments in approximate Bayesian computation
J Lintusaari, MU Gutmann, R Dutta, S Kaski, J Corander
Systematic biology 66 (1), e66-e82, 2017
Elfi: Engine for likelihood-free inference
J Lintusaari, H Vuollekoski, A Kangasraasio, K Skytén, M Jarvenpaa, ...
Journal of Machine Learning Research 19 (16), 1-7, 2018
The role of local partial independence in learning of Bayesian networks
J Pensar, H Nyman, J Lintusaari, J Corander
International journal of approximate reasoning 69, 91-105, 2016
On the identifiability of transmission dynamic models for infectious diseases
J Lintusaari, MU Gutmann, S Kaski, J Corander
Genetics 202 (3), 911-918, 2016
Resolving outbreak dynamics using Approximate Bayesian Computation for stochastic birth-death models
J Lintusaari, P Blomstedt, B Rose, T Sivula, MU Gutmann, S Kaski, ...
Wellcome open research 4, 2019
ELFI: Engine for likelihood-free inference
A Kangasrääsiö, J Lintusaari, K Skytén, M Järvenpää, H Vuollekoski, ...
NIPS 2016 Workshop on Advances in Approximate Bayesian Inference, 2016
Meta-analysis of Bayesian analyses
P Blomstedt, D Mesquita, J Lintusaari, T Sivula, J Corander, S Kaski
arXiv preprint arXiv:1904.04484, 2019
PCSI-labeled directed acyclic graphs
J Lintusaari
Helsingfors universitet, 2014
Steps Forward in Approximate Computational Inference
J Lintusaari
Aalto University, 2019
ELFI, a software package for likelihood-free inference
J Lintusaari, H Vuollekoski, A Kangasrääsiö, K Skyten, M Järvenpää, ...
International Conference on Machine Learning, 2017
The system can't perform the operation now. Try again later.
Articles 1–10