Segui
Andrew Gordon Wilson
Titolo
Citata da
Citata da
Anno
Averaging weights leads to wider optima and better generalization
P Izmailov, D Podoprikhin, T Garipov, D Vetrov, AG Wilson
Uncertainty in Artificial Intelligence (UAI), 2018
15532018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
JR Gardner, G Pleiss, D Bindel, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems (NIPS), 2018
11342018
Deep kernel learning
AG Wilson, Z Hu, R Salakhutdinov, EP Xing
Artificial Intelligence and Statistics (AISTATS), 2016
9702016
A simple baseline for Bayesian uncertainty in deep learning
W Maddox, T Garipov, P Izmailov, D Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2019
8312019
BoTorch: A framework for efficient Monte-Carlo Bayesian optimization
M Balandat, B Karrer, D Jiang, S Daulton, B Letham, AG Wilson, E Bakshy
Advances in neural information processing systems 33, 21524-21538, 2020
806*2020
Gaussian process kernels for pattern discovery and extrapolation
AG Wilson, RP Adams
Proceedings of the 30th International Conference on Machine Learning (ICML …, 2013
7852013
Loss surfaces, mode connectivity, and fast ensembling of DNNs
T Garipov, P Izmailov, D Podoprikhin, DP Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NIPS), 2018
6772018
Bayesian deep learning and a probabilistic perspective of generalization
AG Wilson, P Izmailov
Advances in Neural Information Processing Systems (NeurIPS), 2020
6472020
Kernel interpolation for scalable structured Gaussian processes (KISS-GP)
AG Wilson, H Nickisch
Proceedings of the 32nd International Conference on Machine Learning (ICML …, 2015
5902015
Simple black-box adversarial attacks
C Guo, JR Gardner, Y You, AG Wilson, KQ Weinberger
International Conference on Machine Learning (ICML), 2019
5702019
What Are Bayesian Neural Network Posteriors Really Like?
P Izmailov, S Vikram, MD Hoffman, AG Wilson
International Conference on Machine Learning, 2021
3522021
Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data
M Finzi, S Stanton, P Izmailov, AG Wilson
International Conference on Machine Learning (ICML), 2020
3042020
Stochastic variational deep kernel learning
AG Wilson, Z Hu, RR Salakhutdinov, EP Xing
Advances in Neural Information Processing Systems (NIPS) 29, 2586-2594, 2016
3042016
Cyclical stochastic gradient MCMC for Bayesian deep learning
R Zhang, C Li, J Zhang, C Chen, AG Wilson
International Conference on Learning Representations (ICLR), 2019
2972019
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
B Athiwaratkun, M Finzi, P Izmailov, AG Wilson
International Conference on Learning Representations (ICLR), 2019
289*2019
Student-t processes as alternatives to Gaussian processes
A Shah, AG Wilson, Z Ghahramani
Artificial Intelligence and Statistics, 877-885, 2014
2692014
Bayesian optimization with gradients
J Wu, M Poloczek, AG Wilson, PI Frazier
Advances in Neural Information Processing Systems (NIPS) 30, 2017
2582017
Exact Gaussian processes on a million data points
KA Wang, G Pleiss, JR Gardner, S Tyree, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2019
2572019
Why normalizing flows fail to detect out-of-distribution data
P Kirichenko, P Izmailov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2020
2352020
Gaussian process regression networks
AG Wilson, DA Knowles, Z Ghahramani
Proceedings of the 29th International Conference on Machine Learning (ICML …, 2012
2282012
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20